On the governing fields for tame kernels of quadratic fields

Iwao KIMURA
(University of Toyama)

2010 March 20
Aim of this talk

- What is the tame kernel of number fields?
- What is governing fields?
- Why do governing fields matter?
Plan

1. Tame kernel of number fields

2. The governing fields for 2-power ranks of ideal class groups of quadratic fields

3. Known facts about the governing fields for 2-power ranks of ideal class groups of quadratic fields (our model case)

4. some known results for 2-power ranks of tame kernels associated with quadratic fields

5. Hurrelbrink-Kolster’s 4-rank formulae [HK98]

6. toward a governing field for 4-rank of tame kernels associated with quadratic fields
Milnor’s K_2 of a number field

F: a number field of finite degree over the rationals \mathbb{Q}, the second Milnor K-group $K_2(F)$ is defined by

$$K_2(F) := F^\times \otimes F^\times / \langle x \otimes (1 - x) | x \in F^\times, x(1 - x) \neq 0 \rangle.$$

The class represented by $a \otimes b \in F^\times \otimes F^\times$ is denoted by $\{a, b\} \in K_2(F)$.
Milnor’s K_2 of a number field (cont’d)

S: a finite set of finite places of F, $O_S(F)$: the ring of S-integers of F, $O_S^\times(F)$: the group of S-units of F,

$$K_2^S(F) := \{\{a, b\} \in K_2(F) | a, b \in O_S^\times(F)\}.$$

Note that $K_2^S(F)$ is finitely generated (since O_S^\times is so).

S_m: the first m finite places of F with respect to the norm $N(v)$ of v,

then it holds that

$$K_2(F) = \lim_{m \to \infty} K_2^{S_m}(F).$$
Tame symbol at a finite place v

Let v be a finite place of F, $k(v)$ be the residue field at v, then the **tame symbol** ∂_v at v is defined by

$$\partial_v : K_2(F) \to k(v)^\times, \quad \{a, b\} \mapsto (-1)^{\alpha\beta} \frac{a^\beta}{b^\alpha} \pmod{v},$$

where $\alpha = \text{ord}_v(a)$, $\beta = \text{ord}_v(b)$, $\text{ord}_v(\cdot)$ is the additive normalized valuation at v.
Tame kernel of number fields

We define the tame kernel $K_2(O_F)$ of a number field F (whose ring of integers O_F) to be

$$K_2(O_F) := \bigcap_{v: \text{ fin. places}} \ker(\partial_v : K_2(F) \to k(v)^\times).$$

Fact. The tame kernel of number field F is coincide with the second algebraic K-group of O_F.
Finiteness of tame kernels

Fact (Garland [Gar71]). \(\exists S: \) a finite set of finite places such that

\[
K_2(O_F) \subset K_2^S(F).
\]

Thus \(K_2(O_F) \) is finitely generated. It is known that the groups is torsion. It follows from these fact that \(K_2(O_F) \) is a finite abelian group.
Computation of tame kernels

Tame kernel $K_2(O_F)$ of a number field F is computable in theory:

- its order
- its structure

cf. a practical algorithm is given by Belabas-Gangl [BG04].

If F is a real abelian field, the order of $K_2(O_F)$ is given by the formula (Birch-Tate conjecture, proved by Mazur-Wiles, Kolster)

$$\#K_2(O_F) = (-1)^{[F:Q]}w_2(F)\zeta_F(-1),$$

where $w_2(F) := \max\{n | \exp(\text{Gal}(F(\zeta_n)/F)) \leq 2\}$.
Distribution of (odd parts of) tame kernels of quadratic fields

\[F = \mathbb{Q}(\sqrt{D}) : \text{a quadratic field of the discriminant } D, \]
\[O_D : \text{its ring of integers,} \]
\[p : \text{an odd prime (fix),} \]

Problem: For a positive real number \(X \), estimate the number

\[\# \{0 < |D| < X | p \nmid \#K_2(O_D) \} \]

in terms of \(X \).

If \(D > 0 \), one can obtain some estimate by using Birch-Tate conjecture ([Kim07]).
Distribution of (odd parts of) tame kernels of quadratic fields (cont’d)

With the same notations,

Problem: For a positive real number X, estimate the number

$$\#\{0 < |D| < X \mid p \mid \#K_2(O_D)\}$$

in terms of X.

(For $p = 3$, if $d > 0$ and $d \equiv 6 \pmod{9}$ then $3 \mid \#K_2(O_d)$, by J. Browkin [Bro00].

For $p = 5$, if $d > 0$, $5 \mid h(Q(\sqrt{5d}))$ then $5 \mid \#K_2(O_d)$ by [Bro92].

Just after my talk, Prof. Y. Kishi kindly noticed me that one can deduce, from Ichimura [Ich03], there are infinitely many real quadratic fields whose class numbers and discriminants both divisible by 5. Thus we see $\exists \infty D > 0$ such that $5 \mid \#K_2(O_D)$. This has been shown already by Kimura [Kim06].
2-power ranks for finite abelian groups

Notation. G: a finite abelian group,

2^i-rank $e_i(G)$ of G ($i = 1, 2, \ldots$) are defined by

$$e_i(G) = \dim_{\mathbb{Z}/2\mathbb{Z}}(G^{2^{i-1}}/G^{2^i}).$$
Distribution of (2-parts of) tame kernels of quadratic fields

Today’s theme: We want to know the following density of prime numbers q:

D: A square free integer (fix).

e: A natural number (fix).

T: A finite abelian 2-group of exponent dividing 2^e (fix).

$$\frac{\#\{q\mid K_2(O_{Dq})/K_2(O_{Dq})^{2^e} \cong T\}}{\#\{\text{all primes}\}} = ?,$$

where O_{Dq} is the ring of integers of $\mathbb{Q}(\sqrt{Dq})$.
Model Case: 2-part of ideal class groups

D: A square free integer (fix).

e: A natural number (fix).

T: A finite abelian 2-group of exponent dividing 2^e (fix).

$$\frac{\#\{q \mid \text{Cl}(O_{Dq})/\text{Cl}(O_{Dq})^{2^e} \cong T\}}{\#\{\text{all primes}\}} = ?,$$

where $\text{Cl}(O_{Dq})$ is the ideal class group of $\mathbb{Q}(\sqrt{Dq})$.

In some cases, the RHS is known!
Model Case: Governing field for 2-part of ideal class groups

Fact. (Stevenhagen [Ste89], Morton [Mor82],...) For a square free integer D (with some assumptions), there is a Galois extension $\Sigma(D)/\mathbb{Q}$ such that the following equivalence holds: for a triple of integers ρ, s and r ($0 \leq \rho \leq s \leq r$),

$$
\text{Cl}(O_{Dq})/\text{Cl}(O_{Dq})^8 \cong (\mathbb{Z}/2\mathbb{Z})^{r-s} \oplus (\mathbb{Z}/4\mathbb{Z})^{\rho} \oplus (\mathbb{Z}/8\mathbb{Z})^{s-\rho}
$$

$$
\iff \left[\Sigma(D)/\mathbb{Q}_q \right] \subset \text{Conjugacy classes depending on } \rho, s \text{ and } r.
$$

Chebotarev density theorem provides the density of such q.
Governing field for ideal class group
(Cohn-Lagarias) [CL83]

This kind of phenomenon was first suggested by Cohn-Lagarias 1983.
Governing field for ideal class group

(Morton) [Mor82]

Suppose \(D = p_1 \ldots p_r, \ p_i \equiv 1 \pmod{4}, \ \left(\frac{p_i}{p_j} \right) = 1 \) for \(i \neq j, \ q \equiv 3 \pmod{4}, \)

then, \(\exists \Sigma(-D) \) such that \(\left[\frac{\Sigma(-D)/Q}{q} \right] \) determines \(\text{Cl}(-Dq)/\text{Cl}(-Dq)^8. \)

Further, Morton shows that, in this case, \([\Sigma(-D) : Q] = 2^{r_2+2r} \) and gave explicit density.

\((\text{cf. Hokuriku Number Theory Workshop 2007.}) \)
Governing field for ideal class group
(Stevenhagen) [Ste89]

For any $D \in \mathbb{Z}$, $D \not\equiv 2 \pmod{4}$,

$$K_D := \mathbb{Q}(\sqrt{p^*}; p^* \mid D),$$

where p^* is a prime fundamental discriminant.

$\Omega(D) :=$ the maximal abelian extension of K_D unramified outside $2D\infty$ and of exponent 2 over K_D.

Then, $\text{Cl}(Dq)/\text{Cl}(Dq)^8$ is determined by $\left[\frac{\Omega(D)/\mathbb{Q}}{q} \right]$.

(the most general up to now, but less explicit).
Morton’s strategy

2-rank of ideal class groups of quadratic fields $\mathbb{Q}(\sqrt{Dq})$...well known, 4-rank and 8-rank are described by certain square matrix over $\mathbb{Z}/2\mathbb{Z}$. Its entries are of the form

$\left(\frac{Np_i}{p_j}, -Dq \right)'$,

where ' means that $1' = 0 \pmod{2}$, $-1' = 1 \pmod{2}$.

Strategy: decompose the matrix into the part depends only on D and depends on q.

4-rank formula of K_2

Hurrelbrink and Kolster [HK98, lemma 5.1].

For an imaginary quadratic field $\mathbb{Q}(\sqrt{d})$, $d < 0$,

$$e_2(K_2(O_d)) = \#\{p > 2; \ p \mid d, \} - \text{rank}_{\mathbb{Z}/2\mathbb{Z}}(M(d)),$$

where $M(d)$ is the matrix of the form...
4-rank formula of K_2 (cont’d)

\[
M(d) = \begin{pmatrix}
(-d, p_1)_2 & (-d, p_1)_{p_1} & \cdots & (-d, p_1)_{p_t} \\
(-d, p_2)_2 & (-d, p_2)_{p_1} & \cdots & (-d, p_2)_{p_t} \\
\vdots & \vdots & \ddots & \vdots \\
(-d, p_{t-1})_2 & (-d, p_{t-1})_{p_1} & \cdots & (-d, p_{t-1})_{p_t} \\
(-d, v)_2 & (-d, v)_{p_1} & \cdots & (-d, v)_{p_t} \\
(-d, -1)_2 & (-d, -1)_{p_1} & \cdots & (-d, -1)_{p_t}
\end{pmatrix}^t
\]

\[
v = 2 \text{ if } 2 \not\in N(\mathbb{Q}(\sqrt{d})^\times), \quad v = u + w \text{ if } 2 \in N(\mathbb{Q}(\sqrt{d})^\times) \text{ (in this case, } d \in N(\mathbb{Q}(\sqrt{2})^\times), \text{ so } d = u^2 - 2w^2).\n\]

(Note that trailing $'$, this is a matrix over $\mathbb{Z}/2\mathbb{Z}$).
4-rank of K_2 for certain quadratic fields

Conner-Hurrelbrink [CH89] determined 4-ranks of K_2 for the following cases:

\[
\begin{align*}
 d &= pl, \quad 4 - \text{rank} = 1 \text{ or } 2, \\
 d &= 2pl, \quad 4 - \text{rank} = 1 \text{ or } 2, \\
 d &= -pl, \quad 4 - \text{rank} = 0 \text{ or } 1, \\
 d &= -2pl, \quad 4 - \text{rank} = 0 \text{ or } 1.
\end{align*}
\]

Method: Hurrelbrink-Kolster’s 4-rank formula, relation between the rank of the matrix $M(dl)$ and splitting of l in certain number field, and representation of power of l by positive definite binary quadratic forms.
Osburn’s computation of 4-rank densities [Osb02]

R. Osburn computed the 4-rank densities for $D = pl, 2pl, -pl, -2pl$.

$$\mathcal{L} = \left\{ l \in \mathbb{Z} \mid l \text{ is prime, } l \equiv 1 \pmod{8}, \left(\frac{l}{p} \right) = \left(\frac{p}{l} \right) = 1 \right\}$$

Theorem (Osburn) For the fields $\mathbb{Q}(\sqrt{pl}), \mathbb{Q}(\sqrt{2pl})$, 4-rank 1 and 2 each appear with natural density $1/2$ in \mathcal{L}.

For the fields $\mathbb{Q}(\sqrt{-pl}), \mathbb{Q}(\sqrt{-2pl})$, 4-rank 0 and 1 each appear with natural density $1/2$ in \mathcal{L}.

Method: a construction of a governing field (no reference to this term, though).
4-rank formula revisited

The formula is of the form

\[e_2(K_2(O_{Dq})) = t - \text{rank}_{\mathbb{Z}/2\mathbb{Z}} M(Dq). \]

If one can state the condition "If \(q \) is decomposed in certain way in a certain number field, then the rank of \(M(Dq) \) is the same for those \(q \)”, then the 4-rank is the same for those \(q \).

(This gives an estimate of density of \(q \) from below.)
4-rank formula revisited (cont’d)

On the other hand, if one wants to compute the density of \(q \) which satisfies \(e_2(K_2(O_{Dq})) = e \) (\(e \) given), one must enumerate possible \(M(Dq) \).

(As Morton did in the ideal class groups case).
Conclusion

- Governing field is interesting notion (there also is a notion "Chebotarev set").
- Construction of a governing field for $K_2(O_{Dq})$ has established only for a few case (the case D having a few prime factors).
- 8-rank of $K_2(O_{Dq})$?...seems difficult. cf. Vazzana [Vaz99].
References

