English中文簡体字한국어
新着情報

HOME>新着情報

2019年度数学科第3回談話会のお知らせ / 開催日:令和元年8月23日(金)

2019年8月8日


 令和元年8月23日(金)に、2019年度数学科第3回談話会を下記のとおり開催いたします。
皆様のご来聴をお待ちしています。

*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*
日 時 2019年8月23日(金)  14:00~15:00
場 所 富山大学理学部 B 棟 1 階 B121室
講演者 Libin Li氏
(Department of Mathematics, Yangzhou University, China)
*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*

講演題目 
The center subalgebra of the quantized enveloping algebra of a finite dimensional simple Lie algebra


講演概要
Let $g$ be a finite dimensional simple complex Lie algebra and $U = U_q(g)$ the quantized enveloping algebra (in the sense of Jantzen) with $q$ being generic. We show that the center $Z(U_q(g))$ of the quantum group $U_q(g)$ is isomorphic to a monoid algebra, and that $Z(U_q(g))$ is a polynomial algebra if and only if $g$ is of type $A_1, B_n, C_n, D_{2k+2}, E_7, E_8, F_4$ or $G_2$. Moreover, when $g$ is of type $D_n$ with $n$ odd, then $Z(U_q(g))$ is isomorphic to a quotient algebra of a polynomial algebra in $n+1$ variables with one relation; when $g$ is of type $E_6$, then $Z(U_q(g))$ is isomorphic to a quotient algebra of a polynomial algebra in fourteen variables with eight relations; when $g$ is of type $A_n$, then $Z(U_q(g))$ is isomorphic to a quotient algebra of a polynomial algebra described by $n$-sequences.  
 
The results reported here are based on the joint work with Limeng Xia and Yinhuo Zhang.

問い合わせ先:富山大学理学部数学教室 (古田・川部)


2019年度数学科第3回談話会のお知らせ(PDF 232KB)