Explicit description of the degree function in terms of quantum Lakshmibai-Seshadri paths

Cristian Lenart, Satoshi Naito, Daisuke Sagaki, Anne Schilling, and Mark Shimozono

Abstract. We give an explicit and computable description, in terms of the parabolic quantum Bruhat graph, of the degree function defined for quantum Lakshmibai-Seshadri paths, or equivalently, for “projected” (affine) level-zero Lakshmibai-Seshadri paths. This, in turn, gives an explicit and computable description of the global energy function on tensor products of Kirillov-Reshetikhin crystals of one-column type, and also of (classically restricted) one-dimensional sums.

1. Introduction.

Let \(g \) be an affine Lie algebra with index set \(I \) for the simple roots, and let \(U'_q(g) \) be the quantum affine algebra (without the degree operator) associated to \(g \). Set \(I_0 := I \setminus \{0\} \), where \(0 \in I \) corresponds to the “extended” vertex in the Dynkin diagram of \(g \). In [NS1, NS2, NS3], Naito and Sagaki gave a combinatorial realization of the crystal bases of tensor products of level-zero fundamental representations \(W(\varpi_i), \ i \in I_0 \), over \(U'_q(g) \), where the \(\varpi_i \)'s are the level-zero fundamental weights; the \(U'_q(g) \)-modules \(W(\varpi_i) \) are often called Kirillov-Reshetikhin (KR for short) modules of one-column type, and accordingly their crystal bases are called KR crystals of one-column type. In the papers above, they realized elements of the crystal bases as projected
(affine) level-zero Lakshmibai-Seshadri (LS for short) paths. Here a projected level-zero LS path is obtained from an ordinary LS path of shape \(\lambda \) by factoring out the null root \(\delta \) of the affine Lie algebra \(\mathfrak{g} \), where \(\lambda \) is a level-zero dominant integral weight of the form \(\lambda = \sum_{i \in I_0} m_i \varpi_i \), with \(m_i \in \mathbb{Z}_{\geq 0} \). However, from the nature of the definition above of projected level-zero LS paths, their description of these objects in [NS1, NS2, NS3] is not as explicit as the one of usual LS paths given by Littelmann in [L1].

By contrast, in our previous paper [LNS3], we proved that (in the case that \(\mathfrak{g} \) is an untwisted affine Lie algebra) a projected level-zero LS path is identical to what we call a quantum LS path, which is described quite explicitly in terms of the parabolic quantum Bruhat graph, instead of (the Hasse diagram of) the usual Bruhat graph.

Also, in [NS5], we defined a certain integer-valued function, called the degree function, on the set \(B(\lambda)_{cl} \) of projected level-zero LS paths of shape \(\lambda = \sum_{i \in I_0} m_i \varpi_i \), and proved that it is identical to the global “energy function” on the tensor product \(\bigotimes_{i \in I_0} B(\varpi_i)_{cl}^{m_i} \) under the isomorphism \(B(\lambda)_{cl} \cong \bigotimes_{i \in I_0} B(\varpi_i)_{cl}^{m_i} \) of \(U'_q(\mathfrak{g}) \)-crystals; recall that for each \(i \in I_0 \), the crystal \(B(\varpi_i)_{cl} \) is isomorphic, as a \(U'_q(\mathfrak{g}) \)-crystal, to a KR crystal of one-column type. However, again from the nature of the definition of projected level-zero LS paths, our description in [NS5] is not very explicit, and hence it is difficult to compute the value of the degree function at a given projected level-zero LS path.

In [LNS3], we give an explicit and computable description, in terms of the parabolic quantum Bruhat graph, of the degree function defined for quantum LS paths, or equivalently, for projected level-zero LS paths [LNS3]. This, in turn, gives a new description of the global energy function on tensor products of KR crystals of one-column type, and also of (classically restricted) one-dimensional sums arising from the study of solvable lattice models in statistical mechanics through Baxter’s corner transfer matrix method (for details, see [S]).

The purpose of this paper is to give a new proof of the description above, in terms of the parabolic quantum Bruhat graph, of the degree function. We should mention that our proof in this paper is completely different from the one in [LNS3] in that (at least in appearance) we do not use
Explicit description of the degree function

root operators; it is based on a technical lemma (Lemma 2.3.2) about the decomposition of $\mathbb{B}(\lambda)$ into connected components, and also on our results in [LNS31], where $\mathbb{B}(\lambda)$ denotes the crystal of (not projected) LS paths of shape λ.

This paper is organized as follows. In §2, we fix our basic notation, and review some fundamental facts about level-zero path crystals. Also, we recall the definition of the degree function, and then prove a technical lemma (Lemma 2.3.2), which plays an important role in the proof of our main result (Theorem 4.1.1). In §3, we recall the notion of parabolic quantum Bruhat graph, and then give the definition of quantum LS paths. In §4, we state and prove our main result about the description of the degree function in terms of the parabolic quantum Bruhat graph.

Acknowledgments. C.L. was partially supported by the NSF grant DMS–1101264. S.N. was supported by Grant-in-Aid for Scientific Research (C), No. 24540010, Japan. D.S. was supported by Grant-in-Aid for Young Scientists (B), No. 23740003, Japan. A.S. was partially supported by the NSF grant OCI–1147247. M.S. was partially supported by the NSF grant DMS–1200804.

2. Lakshmibai-Seshadri paths and the degree function.

2.1. Basic notation.

Let \mathfrak{g} be an untwisted affine Lie algebra over \mathbb{C} with Cartan matrix $A = (a_{ij})_{i,j \in I}$; throughout this paper, the elements of the index set I are numbered as in [Kac, §4.8, Table Aff 1]. Take a distinguished vertex $0 \in I$ as in [Kac], and set $I_0 := I \setminus \{0\}$. Let $\mathfrak{h} = (\bigoplus_{j \in I} \mathbb{C} \alpha_j^\vee) \oplus \mathbb{C}d$ denote the Cartan subalgebra of \mathfrak{g}, where $\Pi^\vee := \{\alpha_j^\vee\}_{j \in I} \subset \mathfrak{h}$ is the set of simple coroots, and $d \in \mathfrak{h}$ is the scaling element (or degree operator). We denote by $\langle \cdot, \cdot \rangle : \mathfrak{h}^* \times \mathfrak{h} \to \mathbb{C}$ the duality pairing between $\mathfrak{h}^* := \text{Hom}_\mathbb{C}(\mathfrak{h}, \mathbb{C})$ and \mathfrak{h}. Denote by $\Pi := \{\alpha_j\}_{j \in I} \subset \mathfrak{h}^*$ the set of simple roots, and by $\Lambda_j \in \mathfrak{h}^*$, $j \in I$, the fundamental weights; note that $\langle \alpha_j, d \rangle = \delta_{j,0}$ and $\langle \Lambda_j, d \rangle = 0$ for $j \in I$. Let $\delta = \sum_{j \in I} a_{ij} \alpha_j \in \mathfrak{h}^*$ and $c = \sum_{j \in I} a_{ij}^\vee \alpha_j^\vee \in \mathfrak{h}$ denote the null root and the canonical central element of \mathfrak{g}, respectively.
The Weyl group W of \mathfrak{g} is defined as $W := \langle r_j \mid j \in I \rangle \subset \text{GL}(\mathfrak{h}^*)$, where $r_j \in \text{GL}(\mathfrak{h}^*)$ denotes the simple reflection associated to α_j for $j \in I$, with $\ell : W \rightarrow \mathbb{Z}_{\geq 0}$ the length function on W. Denote by Δ_{re} the set of real roots, i.e., $\Delta_{\text{re}} := \Pi W I$, and by $\Delta^+_{\text{re}} \subset \Delta_{\text{re}}$ the set of positive real roots; for $\beta \in \Delta_{\text{re}}$, we denote by β^\vee the dual root of β, and by $r_\beta \in W$ the reflection associated to β. We take a dual weight lattice P^\vee and a weight lattice P as follows:

$$P^\vee = \left(\bigoplus_{j \in I} \mathbb{Z} \alpha_j^\vee \right) \oplus \mathbb{Z} d \subset \mathfrak{h} \quad \text{and} \quad P = \left(\bigoplus_{j \in I} \mathbb{Z} \Lambda_j \right) \oplus \mathbb{Z} \delta \subset \mathfrak{h}^*. \quad (2.1.1)$$

It is clear that P contains the root lattice $Q := \bigoplus_{j \in I} \mathbb{Z} \alpha_j$, and that $P \cong \text{Hom}_{\mathbb{Z}}(P^\vee, \mathbb{Z})$.

Let W_0 denote the subgroup of W generated by r_j, $j \in I_0$. Set $Q_0 := \bigoplus_{j \in I_0} \mathbb{Z} \alpha_j$, $Q^+_0 := \sum_{j \in I_0} \mathbb{Z} \geq 0 \alpha_j$, $\Delta_0 := \Delta_{\text{re}} \cap Q_0$, $\Delta^+_0 := \Delta_{\text{re}} \cap Q^+_0$, and $\Delta^-_0 := -\Delta^+_0$. Note that W_0 (resp., Δ_0, Δ^+_0, Δ^-_0) can be thought of as the (finite) Weyl group (resp., the set of roots, the set of positive roots, the set of negative roots) of the finite-dimensional simple Lie subalgebra of \mathfrak{g} corresponding to the subset I_0 of I. Also, we denote by $\theta \in \Delta^+_0$ the highest root of the (finite) root system Δ_0; note that $\alpha_0 = -\theta + \delta$ and $\alpha_0^\vee = -\theta^\vee + c$.

Definition 2.1.1.

1. An integral weight $\lambda \in P$ is said to be of level zero if $\langle \lambda, c \rangle = 0$.
2. An integral weight $\lambda \in P$ is said to be level-zero dominant if $\langle \lambda, c \rangle = 0$, and $\langle \lambda, \alpha_j^\vee \rangle \geq 0$ for all $j \in I_0 = I \setminus \{0\}$.

Remark 2.1.2.

1. If $\lambda \in P$ is of level zero, then $\langle \lambda, \alpha_0^\vee \rangle = -\langle \lambda, \theta^\vee \rangle$.
2. For $h \in Q^+_0 := \bigoplus_{j \in I_0} \mathbb{Z} \alpha_j^\vee$, we denote by $t_h \in W$ the translation by h (see [Kac, §6.5]). If λ is of level-zero, then $t_h \lambda = \lambda - \langle \lambda, h \rangle \delta$ for $h \in Q^+_0$. Because W is the semidirect product of W_0 and the abelian (normal) subgroup $T = \{ t_h \mid h \in Q^+_0 \}$ of translations by [Kac, Proposition 6.5], we deduce (see also [NS4, Lemma 2.6] for example)
that if \(\lambda \) is level-zero dominant, then \(W\lambda = W_0 T\lambda \subset W_0 \lambda + \mathbb{Z} \delta \subset \lambda - Q_0^+ + \mathbb{Z} \delta \); we define \(d_\lambda \in \mathbb{Z}_{>0} \) by: \(\{ n \in \mathbb{Z} \mid \lambda + n\delta \in T\lambda \} = d_\lambda \mathbb{Z} \).

For each \(i \in I_0 \), we define a level-zero fundamental weight \(\varpi_i \in P \) by

\[
\varpi_i := \Lambda_i - a_i^\vee \Lambda_0. \tag{2.1.2}
\]

The weights \(\varpi_i \) for \(i \in I_0 \) are actually level-zero dominant integral weights; indeed, \(\langle \varpi_i, c \rangle = 0 \) and \(\langle \varpi_i, \alpha_j^\vee \rangle = \delta_{i,j} \) for \(i, j \in I_0 \).

Let \(\text{cl} : h^* \to h^*/C\delta \) denote the canonical projection from \(h^* \) onto \(h^*/C\delta \), and define \(P_{\text{cl}} \) and \(P_{\text{cl}}^\vee \) by

\[
P_{\text{cl}} := \text{cl}(P) = \bigoplus_{j \in I} \mathbb{Z} \text{cl}(\Lambda_j) \quad \text{and} \quad P_{\text{cl}}^\vee := \bigoplus_{j \in I} \mathbb{Z} \alpha_j^\vee \subset P^\vee. \tag{2.1.3}
\]

We see that \(P_{\text{cl}} \cong P/\mathbb{Z} \delta \), and that \(P_{\text{cl}} \) can be identified with \(\text{Hom}_\mathbb{Z}(P_{\text{cl}}^\vee, \mathbb{Z}) \) as a \(\mathbb{Z} \)-module by

\[
\langle \text{cl}(\lambda), h \rangle = \langle \lambda, h \rangle \quad \text{for} \ \lambda \in P \ \text{and} \ h \in P_{\text{cl}}^\vee. \tag{2.1.4}
\]

Also, there exists a natural action of the Weyl group \(W \) on \(h^*/C\delta \) induced by the one on \(h^* \), since \(W\delta = \delta \); it is obvious that \(w \circ \text{cl} = \text{cl} \circ w \) for all \(w \in W \).

Remark 2.1.3. Let \(\lambda \in P \) be a level-zero integral weight. It is easy to check that \(\text{cl}(W\lambda) = W_0 \text{cl}(\lambda) \) (see the proof of [NS4, Lemma 2.3.3]). In particular, we have \(\text{cl}(r_0\lambda) = r_0\lambda \) since \(\alpha_0 = -\theta + \delta \) and \(\alpha_0^\vee = -\theta^\vee + c \).

For simplicity of notation, we often write \(\beta \) instead of \(\text{cl}(\beta) \in P_{\text{cl}} \) for \(\beta \in \bigoplus_{j \in I} \mathbb{Z} \alpha_j \); note that \(\alpha_0 = -\theta \) in \(P_{\text{cl}} \) since \(\alpha_0 = -\theta + \delta \) in \(P \).

2.2. Lakshmibai-Seshadri paths.

Here we recall the definition of Lakshmibai-Seshadri (LS for short) paths from [L2, §4]. In this subsection, we fix a level-zero dominant integral weight \(\lambda \in \sum_{i \in I_0} \mathbb{Z}_{\geq 0} \varpi_i \).

Definition 2.2.1. For \(\mu, \nu \in W\lambda \), let us write \(\mu \geq \nu \) if there exists a sequence \(\mu = \mu_0, \mu_1, \ldots, \mu_n = \nu \) of elements in \(W\lambda \) and a sequence \(\xi_1, \ldots, \xi_n \in \Delta^+_0 \) of positive real roots such that \(\mu_k = r_{\xi_k}(\mu_{k-1}) \) and
\(\langle \mu_{k-1}, \xi_k^\vee \rangle < 0 \) for \(k = 1, 2, \ldots, n \). If \(\mu \geq \nu \), then we define \(\text{dist}(\mu, \nu) \) to be the maximal length \(n \) of all possible such sequences \(\mu_0, \mu_1, \ldots, \mu_n \) for \((\mu, \nu) \).

Remark 2.2.2. Keep the notation of Definition 2.2.1. We see that

\[
\nu - \mu = \sum_{k=1}^{n} (\mu_k - \mu_{k-1}) = -\sum_{k=1}^{n} \langle \mu_{k-1}, \xi_k^\vee \rangle \xi_k \in \sum_{j \in I} \mathbb{Z}_{\geq 0} \alpha_j.
\]

It is obvious that \(\mu \) covers \(\nu \) in the poset \(W\lambda \) if and only if \(\mu > \nu \) with \(\text{dist}(\mu, \nu) = 1 \). In this case, we write \(\mu \mathrel{\supseteq} \nu \).

Remark 2.2.3. Let \(\mu, \nu \in W\lambda \) be such that \(\mu \mathrel{\supseteq} \nu \), and let \(\xi \in \Delta^+_\text{re} \) be the positive real root such that \(r^\xi \mu = \nu \). We know from [NS4, Lemma 2.11] that \(\xi \in \Delta^+_0 \uplus \{-\gamma + \delta \mid \gamma \in \Delta^+_0 \} \).

Definition 2.2.4. For \(\mu, \nu \in W\lambda \) with \(\mu > \nu \) and a rational number \(0 < \sigma < 1 \), a \(\sigma \)-chain for \((\mu, \nu) \) is, by definition, a sequence \(\mu = \mu_0 \mathrel{\supseteq} \mu_1 \mathrel{\supseteq} \cdots \mathrel{\supseteq} \mu_n = \nu \) of elements in \(W\lambda \) such that \(\sigma \langle \mu_{k-1}, \xi_k^\vee \rangle \in \mathbb{Z}_{<0} \) for all \(k = 1, 2, \ldots, n \), where \(\xi_k \) is the positive real root such that \(r^\xi \mu_k = \mu_{k-1} \).

Definition 2.2.5. An LS path of shape \(\lambda \) is, by definition, a pair \((\nu; \sigma) \) of a sequence \(\nu : \nu_1 > \nu_2 > \cdots > \nu_s \) of elements in \(W\lambda \) and a sequence \(\sigma : 0 = \sigma_0 < \sigma_1 < \cdots < \sigma_s = 1 \) of rational numbers satisfying the condition that there exists a \(\sigma_k \)-chain for \((\nu_k, \nu_{k+1}) \) for each \(k = 1, 2, \ldots, s-1 \). We denote by \(\mathbb{B}(\lambda) \) the set of all LS paths of shape \(\lambda \).

We identify \(\pi = (\nu_1, \nu_2, \ldots, \nu_s; \sigma_0, \sigma_1, \ldots, \sigma_s) \in \mathbb{B}(\lambda) \) with the following piecewise-linear, continuous map \(\pi : [0, 1] \to \mathbb{R} \otimes \mathbb{Z} P \):

\[
\pi(t) = \sum_{l=1}^{k-1} (\sigma_l - \sigma_{l-1}) \nu_l + (t - \sigma_{k-1}) \nu_k \quad \text{for} \quad \sigma_{k-1} \leq t \leq \sigma_k, \quad 1 \leq k \leq s.
\]

(2.2.1)

Remark 2.2.6. It is obvious from the definition that for every \(\nu \in W\lambda \), \(\pi_\nu := (\nu; 0, 1) \) is an LS path of shape \(\lambda \), which corresponds (under (2.2.1)) to the straight line path \(\pi_\nu(t) = t\nu \), \(t \in [0, 1] \), connecting 0 to \(\nu \).

For \(\pi \in \mathbb{B}(\lambda) \), we define \(\text{cl}(\pi) : [0, 1] \to \mathbb{R} \otimes \mathbb{Z} P_\text{cl} \) by

\[
\text{cl}(\pi)(t) := \text{cl}(\pi(t)) \quad \text{for} \quad t \in [0, 1].
\]
Also, we set
\[
B(\lambda)_{\text{cl}} := \text{cl}(B(\lambda)) = \{ \text{cl}(\pi) \mid \pi \in B(\lambda) \}.
\]

Remark 2.2.7. For \(\mu \in P_{\text{cl}} \), we define \(\eta_\mu(t) := t\mu \) for \(t \in [0, 1] \). It is easily seen from Remark 2.2.6 that \(\eta_\mu \) is contained in \(B(\lambda)_{\text{cl}} \) for all \(\mu \in \text{cl}(W\lambda) = W_0 \text{cl}(\lambda) \).

We can endow the set \(B(\lambda) \) of LS paths of shape \(\lambda \) (resp., the set \(B(\lambda)_{\text{cl}} \) of “cl-projected” LS paths of shape \(\lambda \)) with a crystal structure with weights in \(P \) (resp., in \(P_{\text{cl}} \)) by defining root operators on \(B(\lambda) \) (resp., \(B(\lambda)_{\text{cl}} \)); since we do not use root operators in this paper, we omit the details (see [L2], and also [NS5, §2.2], [LNS3, §2.3]).

2.3. Degree function.

As in the previous subsection, we fix a level-zero dominant integral weight \(\lambda \in \sum_{i \in I_0} \mathbb{Z}_{\geq 0} \varpi_i \). Let us recall the definition of the degree function \(\text{Deg} = \text{Deg}_\lambda : B(\lambda)_{\text{cl}} \rightarrow \mathbb{Z}_{\leq 0} \) from [NS5, §3.1]. We know the following proposition from [NS5, Proposition 3.1.3].

Proposition 2.3.1. Let \(\lambda \in \sum_{i \in I_0} \mathbb{Z}_{\geq 0} \varpi_i \) be a level-zero dominant integral weight. For each \(\eta \in B(\lambda)_{\text{cl}} \), there exists a unique element \(\pi_\eta \in B(\lambda) \) satisfying the following conditions:

1. \(\text{cl}(\pi_\eta) = \eta; \)
2. the element \(\pi_\eta \) is contained in the connected component \(B_0(\lambda) \) of \(B(\lambda) \) containing the straight line path \(\pi_\lambda = (\lambda; 0, 1) \in B(\lambda); \)
3. if we write \(\pi_\eta \) in the form \((\nu_1, \nu_2, \ldots, \nu_s; \sigma) \) as in Definition 2.2.5, then \(\nu_1 \) is contained in the set \(\lambda - Q_0^+ \) (see Remark 2.1.2 (2)).

Let \(\eta \in B(\lambda)_{\text{cl}} \). It follows from [NS5, Lemma 3.1.1] that \(\pi_\eta(1) \in P \) is of the form \(\pi_\eta(1) = \lambda - \beta + K\delta \) for some \(\beta \in Q_0^+ \) and \(K \in \mathbb{Z}_{\geq 0} \). We define
\[
\text{Deg}(\eta) = \text{Deg}_\lambda(\eta) := -K \in \mathbb{Z}_{\leq 0}.
\]

The following lemma plays an important role in the proof of Theorem 4.1.1.
Lemma 2.3.2. Let C be a connected component of $\mathcal{B}(\lambda)$.

1. For each $\eta \in \mathcal{B}(\lambda)_{\text{cl}}$, there exists a unique element $\pi^C_\eta \in C$ satisfying the same conditions as (1) and (3) of Proposition 2.3.1.

2. If $\pi^C_\eta(1) = \lambda - \beta - \text{Deg}(\eta)\delta$ with $\beta \in Q^+_0$, then $\pi^C_\eta(1) = \lambda - \beta + (-\text{Deg}(\eta) + L)\delta$ for some $L \in \mathbb{Z}_{\geq 0}$.

3. In part (2) above, $C = \mathbb{B}_0(\lambda)$ if and only if $L = 0$.

Proof. If $C = \mathbb{B}_0(\lambda)$, then we have $\pi^C_\eta = \pi_\eta$. In this case, part (1) follows from Proposition 2.3.1; part (2) and the “only if” part of part (3) are obvious.

Assume that $C \neq \mathbb{B}_0(\lambda)$. We see from [NS4, Theorem 3.1 and Remark 2.15] that the connected component C contains a unique element π^C_λ of the form

$$\pi^C_\lambda = (\lambda - N_1\delta, \ldots, \lambda - N_s\delta, \lambda; \tau_0, \tau_1, \ldots, \tau_{s-1}, \tau_s)$$ (2.3.1)

for some integers $N_1 > N_2 > \cdots > N_{s-1} > N_s = 0$ and rational numbers $0 = \tau_0 < \tau_1 < \cdots < \tau_s = 1$; since $C \neq \mathbb{B}_0(\lambda)$ (and hence $\pi^C_\lambda \neq \pi_\lambda$), we have $s > 1$. From (2.3.1), by using (2.2.1), we deduce that

$$\pi^C_\lambda(1) = \lambda - \left(\sum_{u=1}^{s-1}(\tau_u - \tau_{u-1})N_u\right)\delta;$$

note that $N \in \mathbb{Z}$ since $\pi^C_\lambda(1) \in P$, which in turn follows from the integrality condition on LS paths (see Definitions 2.2.4 and 2.2.5). Also, since $N_1 > N_2 > \cdots > N_{s-1} > N_s = 0$ with $s > 1$, it follows that

$$N = \sum_{u=1}^{s-1}(\tau_u - \tau_{u-1})N_u < \sum_{u=1}^{s}(\tau_u - \tau_{u-1})N_1 = N_1.$$

Therefore, we have $\pi^C_\lambda(1) = \lambda - N_1\delta + L\delta$, with $L := N_1 - N \in \mathbb{Z}_{>0}$.

Let us denote by $F : [0, 1] \to \mathbb{R} \otimes \mathbb{Z} P$ the piecewise-linear, continuous function such that $\pi^C_\lambda(t) = \pi_\lambda(t) + F(t)\delta$ for all $t \in [0, 1]$; note that $F(0) = 0$,

$$\lim_{t \to 0} \frac{F(t) - F(0)}{t - 0} = \lim_{t \to 0} \frac{F(t)}{t} = -N_1,$$ (2.3.2)
and $F(1) = -N_1 + L$. Then, by using [NS4, Lemma 2.26], we deduce that $C = \{ \pi(t) + F(t)\delta \mid \pi \in B_0(\lambda) \}$. Hence it follows from [NS5, Lemma 3.1.2] that

$$\{ \pi \in C \mid \text{cl}(\pi) = \eta \} = \{ \pi_\eta(t) + t(M\delta) + F(t)\delta \mid M \in d_\lambda \mathbb{Z} \};$$

recall the notation $d_\lambda \in \mathbb{Z}_{\geq 0}$ from Remark 2.1.2 (2). Therefore, we conclude by Proposition 2.3.1 and (2.3.2) that $\pi_\eta^C(t) := \pi_\eta(t) + F(t)\delta + t(N_1\delta)$ is a unique element in C satisfying the same conditions as (1) and (3) of Proposition 2.3.1. This proves part (1) for $C \neq B_0(\lambda)$. Moreover, part (2) for $C \neq B_0(\lambda)$ and the “if” part of part (3) follow immediately since

$$\pi_\eta^C(1) = \pi_\eta(1) + F(1)\delta + N_1\delta = \pi_\eta(1) + L\delta$$

with $L > 0$. This completes the proof of the lemma.

\[\square\]

2.4. Global energy function.

We know from [NS1, Proposition 5.8] and [NS3, Theorem 2.1.1 and Proposition 3.4.2] that for each $i \in I_0$, the crystal $B(\varpi_i)_{\text{cl}}$ is isomorphic, as a crystal with weights in P_{cl}, to the crystal basis of the level-zero fundamental representation $W(\varpi_i)$ introduced in [Kas2, Theorem 5.17]; the level-zero fundamental modules $W(\varpi_i), i \in I_0$, are often called Kirillov-Reshetikhin (KR for short) modules of one-column type, and accordingly their crystal bases are called KR crystals of one-column type. Also, we know the following from [NS2, Theorem 3.2]. Let $i = (i_1, i_2, \ldots, i_p)$ be an arbitrary sequence of elements of I_0 (with repetitions allowed), and set $\lambda := \varpi_{i_1} + \varpi_{i_2} + \cdots + \varpi_{i_p}$. Then the crystal $B(\lambda)_{\text{cl}}$ is isomorphic, as a crystal with weights in P_{cl}, to the tensor product $B_i := B(\varpi_{i_1})_{\text{cl}} \otimes B(\varpi_{i_2})_{\text{cl}} \otimes \cdots \otimes B(\varpi_{i_p})_{\text{cl}}$ of KR crystals of one-column type. Moreover, in [NS5, Theorem 4.1], we proved that the degree function $\text{Deg} = \text{Deg}_\lambda : B(\lambda)_{\text{cl}} \to \mathbb{Z}_{\leq 0}$ in §2.3 is identical, up to a constant, to the global energy function D_i (which is called the energy function in [LNS32], and the right energy function in [LS]; note that the order of tensor factors in tensor products of crystals in [LS] is “opposite” to the one in this paper and in [LNS32]) on $B_i = B(\varpi_{i_1})_{\text{cl}} \otimes B(\varpi_{i_2})_{\text{cl}} \otimes \cdots \otimes B(\varpi_{i_p})_{\text{cl}}$ under the isomorphism $\Psi : B(\lambda)_{\text{cl}} \sim \sim B_i$ of crystals above.
Now we explain the relation between the degree function and the global energy function more precisely. Following [HKOTY, §3] and [HKOTT, §3.3] (see also [NS5, §4.1]), we define the global energy function $D_1 : \mathbb{B}_1 = \mathbb{B}(\varpi_1)_{\text{cl}} \otimes \mathbb{B}(\varpi_2)_{\text{cl}} \otimes \cdots \otimes \mathbb{B}(\varpi_p)_{\text{cl}} \to \mathbb{Z}$ as follows. First we recall that there exists a unique isomorphism
\[
\mathbb{B}(\varpi_{ik})_{\text{cl}} \otimes \mathbb{B}(\varpi_{ik+1})_{\text{cl}} \otimes \cdots \otimes \mathbb{B}(\varpi_{i_{t-1}})_{\text{cl}} \otimes \mathbb{B}(\varpi_i)_{\text{cl}} \xrightarrow{\sim} \mathbb{B}(\varpi_{i_{t}})_{\text{cl}} \otimes \mathbb{B}(\varpi_{i_{k}})_{\text{cl}} \otimes \cdots \otimes \mathbb{B}(\varpi_{i_{l-2}})_{\text{cl}} \otimes \mathbb{B}(\varpi_{i_{l-1}})_{\text{cl}}
\]
of crystals, which is given as the composite of combinatorial R-matrices (see [NS5, §2.4]). For an element $\eta_1 \otimes \eta_2 \otimes \cdots \otimes \eta_p \in \mathbb{B}_1$, we define $\eta^{(k)}_i \in \mathbb{B}(\varpi_i)_{\text{cl}}$, $1 \leq k < l \leq p$, to be the first factor (which lies in $\mathbb{B}(\varpi_i)_{\text{cl}}$) of the image of $\eta_k \otimes \eta_{k+1} \otimes \cdots \otimes \eta_l \in \mathbb{B}(\varpi_{ik})_{\text{cl}} \otimes \mathbb{B}(\varpi_{ik+1})_{\text{cl}} \otimes \cdots \otimes \mathbb{B}(\varpi_{i_{l-1}})_{\text{cl}}$ under the above isomorphism of crystals. For convenience, we set $\eta^{(l)}_l := \eta_l$ for $1 \leq l \leq p$. Furthermore, for each $1 \leq k \leq p$, take (and fix) an arbitrary element $\eta^p_k \in \mathbb{B}(\varpi_{ik})_{\text{cl}}$ such that $f_j \eta^p_k = 0$ for all $j \in I_0$. Then we set
\[
D_1(\eta_1 \otimes \eta_2 \otimes \cdots \otimes \eta_p) =
\sum_{1 \leq k < l \leq p} H_{\varpi_{ik}, \varpi_{il}}(\eta_k \otimes \eta^{(k+1)}_i) + \sum_{k=1}^p H_{\varpi_{ik}, \varpi_{ik}}(\eta^p_k \otimes \eta^{(1)}_k).
\]
Here, $H_{\varpi_{ik}, \varpi_{ij}} : \mathbb{B}(\varpi_{ik})_{\text{cl}} \otimes \mathbb{B}(\varpi_i)_{\text{cl}} \to \mathbb{Z}$ is the local energy function, which is a unique \mathbb{Z}-valued function on $\mathbb{B}(\varpi_{ik})_{\text{cl}} \otimes \mathbb{B}(\varpi_i)_{\text{cl}}$ satisfying the conditions [NS5, (H1) and (H2) in Theorem 2.5.1]. Also, we define a constant $D_1^{\text{ext}} \in \mathbb{Z}$ by
\[
D_1^{\text{ext}} := \sum_{k=1}^p H_{\varpi_{ik}, \varpi_{ik}}(\eta^p_k \otimes \text{cl}(\pi_{\varpi_{ik}})).
\]
In [NS5, Theorem 4.1], we proved that for every $\eta \in \mathbb{B}(\lambda)_{\text{cl}},$
\[
\text{Deg}(\eta) = D_1(\Psi(\eta)) - D_1^{\text{ext}},
\]
where $\Psi : \mathbb{B}(\lambda)_{\text{cl}} \xrightarrow{\sim} \mathbb{B}_1$ is the isomorphism of crystals above.

\textit{Remark 2.4.1.} We can verify that the function $D_1 \circ \Psi : \mathbb{B}(\lambda)_{\text{cl}} \to \mathbb{Z}$ is a unique function on $\mathbb{B}(\lambda)_{\text{cl}}$ satisfying [NS5, (3.2.1)] (with Deg replaced by $D_1 \circ \Psi$) and the condition that $D_1(\Psi(\pi_\lambda)) = D_1^{\text{ext}}$ (see [NS5, Lemma 3.2.1 (1)]).
3. Quantum Lakshmibai-Seshadri paths.

3.1. Parabolic quantum Bruhat graph.

In this subsection, we fix a subset J of I_0. Set

$$ W_{0,J} := \langle r_j \mid j \in J \rangle \subset W_0. $$

It is well-known that each coset in $W_0/W_{0,J}$ has a unique element of minimal length, called the minimal coset representative for the coset; we denote by $W^0_J \subset W^0$ the set of minimal coset representatives for the cosets in $W_0/W_{0,J}$, and by $\lfloor \cdot \rfloor = \lfloor \cdot \rfloor_J : W_0 \rightarrow W^0_J \cong W_0/W_{0,J}$ the canonical projection. Also, we set $\Delta_{0,J} := \Delta_0 \cap (\bigoplus_{j \in J} \mathbb{Z} \alpha_j)$, $\Delta^+_0,J := \Delta^+_0 \cap (\bigoplus_{j \in J} \mathbb{Z} \alpha_j)$, and $\rho := \frac{1}{2} \sum_{\alpha \in \Delta^+_0} \alpha$, $\rho_J := \frac{1}{2} \sum_{\alpha \in \Delta^+_0,J} \alpha$.

Definition 3.1.1. The parabolic quantum Bruhat graph is the $(\Delta^+_0 \setminus \Delta^+_0,J)$-labeled, directed graph with vertex set W^0_J and $(\Delta^+_0 \setminus \Delta^+_0,J)$-labeled, directed edges of the following form: $w \xrightarrow{\beta} \lfloor w\beta \rfloor$ for $w \in W^0_J$ and $\beta \in \Delta^+_0 \setminus \Delta^+_0,J$ such that either

(i) $\ell(\lfloor w\beta \rfloor) = \ell(w) + 1$, or

(ii) $\ell(\lfloor w\beta \rfloor) = \ell(w) - 2\langle \rho - \rho_J, \beta^\vee \rangle + 1$;

if (i) holds (resp., (ii) holds), then the edge is called a Bruhat edge (resp., a quantum edge).

Example 3.1.2. Assume that g is of type $A_{2}^{(1)}$ (and hence Δ_0 and W_0 are of type A_2), and $J = \emptyset$. Then the quantum Bruhat graph is as follows, where $\theta = \alpha_1 + \alpha_2 \in \Delta_0^+$, the highest root of Δ_0:
Let $x, y \in W_0^J$. A directed path d from y to x in the parabolic quantum Bruhat graph is, by definition, a pair of a sequence w_0, w_1, \ldots, w_n of elements in W_0^J and a sequence $\beta_1, \beta_2, \ldots, \beta_n$ of elements in $\Delta_0^+ \setminus \Delta^+_0,J$ such that in the parabolic quantum Bruhat graph,

$$d : x = w_0 \beta_1 \leftarrow w_1 \beta_2 \leftarrow \cdots \leftarrow \beta_n \leftarrow w_n = y.$$ \hspace{1cm} (3.1.1)

A directed path d from y to x is said to be shortest if its length n is minimal among all possible directed paths from y to x; let $\ell(y, x)$ denote the length of a shortest directed path from y to x in the parabolic quantum Bruhat graph. Also, we define the weight $\text{wt}(d) \in Q^\vee = \bigoplus_{j \in I_0} \mathbb{Z} \alpha_j^\vee$ of a directed path of the form (3.1.1) by

$$\text{wt}(d) := \sum_{1 \leq k \leq n; \atop w_{k-1} \beta_k \leftarrow w_k \text{ is a quantum edge}} \beta_k^\vee.$$ \hspace{1cm} (3.1.2)

We recall the following proposition from [LNS31, Theorem 6.5].

Proposition 3.1.3. Set $\Lambda := \text{cl}(\lambda) \in P_{\text{cl}}$.

Explicit description of the degree function

119

Let \(w \in W_0^J \) and \(\beta \in \Delta_0^+ \setminus \Delta_{0,J}^+ \) be such that \([wr_\beta] \leftarrow w\) in the parabolic quantum Bruhat graph. We set

\[
\xi := \begin{cases}
 w\beta & \text{if } [wr_\beta] \leftarrow w \text{ is a Bruhat edge}, \\
 w\beta + \delta & \text{if } [wr_\beta] \leftarrow w \text{ is a quantum edge}.
\end{cases}
\]

Then, \(\xi \in \Delta_{re}^+ \), and \(r_\xi \nu > \nu \) for all \(\nu \in W_\lambda \) such that \(\cl(\nu) = w\Lambda \).

2. Let \(\mu, \nu \in W_\lambda \) be such that \(\mu \succ \nu \), and let \(\xi \in \Delta_{re}^+ \) be the positive real root such that \(r_\xi \mu = \nu \); recall from Remark 2.2.3 that \(\xi \in \Delta_0^+ \sqcup \{-\gamma + \delta \mid \gamma \in \Delta_0^+ \} \). Let \(w \in W_0^J \) be a unique element in \(W_0^J \) such that \(\cl(\nu) = w\Lambda \), and set

\[
\beta := \begin{cases}
 w^{-1}\xi & \text{if } \xi \in \Delta_0^+, \\
 w^{-1}(\xi - \delta) & \text{if } \xi \in \{-\gamma + \delta \mid \gamma \in \Delta_0^+ \}.
\end{cases}
\]

Then, \(\beta \in \Delta_0^+ \setminus \Delta_J^+ \), and \([wr_\beta] \leftarrow w\) in the parabolic quantum Bruhat graph; note that \(\cl(\mu) = [wr_\beta]\Lambda \). Moreover, the edge \([wr_\beta] \leftarrow w\) is a Bruhat (resp., quantum) edge if \(\xi \in \Delta_0^+ \) (resp., \(\xi \in \{-\gamma + \delta \mid \gamma \in \Delta_0^+ \}\)).

3.2. Definition of quantum Lakshmibai-Seshadri paths.

In this subsection, we fix a level-zero dominant integral weight \(\lambda \in \sum_{i \in I_0} \mathbb{Z}_{\geq 0} \varpi_i \), and set \(\Lambda := \cl(\lambda) \) for simplicity of notation. Also, we set

\[
J := \{ j \in I_0 \mid \langle \Lambda, \alpha_j^\vee \rangle = 0 \} \subset I_0.
\]

Definition 3.2.1. Let \(x, y \in W_0^J \), and let \(\sigma \in \mathbb{Q} \) be such that \(0 < \sigma < 1 \). A directed \(\sigma \)-path from \(y \) to \(x \) is, by definition, a directed path

\[
x = w_0 \overset{\beta_1}{\leftarrow} w_1 \overset{\beta_2}{\leftarrow} w_2 \overset{\beta_3}{\leftarrow} \cdots \overset{\beta_n}{\leftarrow} w_n = y
\]

from \(y \) to \(x \) in the parabolic quantum Bruhat graph satisfying the condition that

\[
\sigma(\Lambda, \beta_k^\vee) \in \mathbb{Z} \quad \text{for all } 1 \leq k \leq n.
\]
Remark 3.2.2. Keep the notation and setting of Proposition 3.1.3(1). Let \(0 < \sigma < 1\) be a rational number. If an edge \(\lfloor w\beta \rfloor \leftarrow w\) satisfies \(\sigma<\Lambda, \beta'\rangle \in \mathbb{Z}\), then \(r_{\xi}\nu > \nu\) is a \(\sigma\)-chain for \((r_{\xi}\nu, \nu)\). Indeed, we have \(\sigma<\nu, \xi'\rangle = \sigma<w\Lambda, w\beta'\rangle = \sigma<\Lambda, \beta'\rangle \in \mathbb{Z}\).

Example 3.2.3. Assume that \(g\) is of type \(A_2^{(1)}\), and \(\lambda = 2\varpi_1 + \varpi_2\). Then, \(J\) is the empty set, and hence the corresponding (parabolic) quantum Bruhat graph is the one in Example 3.1.2. In the figure below, the symbol \([a]\) on an edge indicates that the value of \(\Lambda = \text{cl}(\lambda)\) at the coroot for the label of the edge is equal to \(a\):

![Diagram](attachment:image.png)

From this, we see that the directed edges \(r_1 \xrightarrow{\theta} r_2 r_1, w_0 \xrightarrow{\theta} e,\) and \(r_2 \xrightarrow{\theta} r_1 r_2\) are \((1/3)\)-paths, and hence \((2/3)\)-paths. Also, we see that the directed edges \(e \xrightarrow{\alpha_1} r_1, r_1 r_2 \xrightarrow{\alpha_1} w_0,\) and \(r_2 r_1 \xrightarrow{\alpha_1} r_2\) are \((1/2)\)-paths.

Definition 3.2.4. Let us denote by \(\tilde{H}(\lambda)_{\text{cl}}\) (resp., \(\tilde{H}(\lambda)_{\text{cl}}\)) the set of all pairs \(\eta = (z; \sigma)\) of a sequence \(z : x_1, x_2, \ldots, x_s\) of elements in \(W_0^{J}\), with \(x_k \neq x_{k+1}\) for \(1 \leq k \leq s - 1\), and a sequence \(\sigma : 0 = \sigma_0 < \sigma_1 < \cdots < \sigma_s = 1\) of rational numbers satisfying the condition that there exists a directed \(\sigma_k\)-path (resp., directed \(\sigma_k\)-path of length \(\ell(x_{k+1}, x_k)\)) from \(x_{k+1}\) to \(x_k\) for each
Explicit description of the degree function

1 ≤ k ≤ s − 1. We call an element of \(\hat{\mathcal{B}}(\lambda)_{\text{cl}} \) a quantum Lakshmibai-Seshadri path of shape \(\lambda \).

Example 3.2.5. Keep the notation and setting of Example 3.2.3. We can check that

\[
\begin{align*}
\eta_1 & = (r_2, r_2 r_1, r_1 ; 0, 1/2, 2/3, 1), \\
\eta_2 & = (r_1, e, w_0 ; 0, 1/2, 2/3, 1), \\
\eta_3 & = (e, w_0, r_1 r_2 ; 0, 1/3, 1/2, 1)
\end{align*}
\]

are quantum LS paths of shape \(\lambda \).

Let \(\eta = (x_1, x_2, \ldots, x_s ; \sigma_0, \sigma_1, \ldots, \sigma_s) \) be a rational path, that is, a pair of a sequence \(x_1, x_2, \ldots, x_s \) of elements in \(W_0^J \), with \(x_k \neq x_{k+1} \) for \(1 ≤ k ≤ s − 1 \), and a sequence \(0 = \sigma_0 < \sigma_1 < \cdots < \sigma_s \) of rational numbers. We identify \(\eta \) with the following piecewise-linear, continuous map \(\eta : [0, 1] \to \mathbb{R} \otimes_{\mathbb{Z}} P_{\text{cl}} \) (cf. (2.2.1)):

\[
\eta(t) = \sum_{l=1}^{k-1} (\sigma_l - \sigma_{l-1}) x_l \Lambda + (t - \sigma_{k-1}) x_k \Lambda \quad \text{for} \quad \sigma_{k-1} ≤ t ≤ \sigma_k, \quad 1 ≤ k ≤ s;
\]

(3.2.1)

Here we note that the map \(W_0^J \to W_0 \Lambda, \ w \mapsto w \Lambda \), is bijective.

We know the following from \[LNS^3, \text{Theorem 4.1.1}\] (see also \[LNS^32\]).

Theorem 3.2.6. With the notation and setting above, we have

\[
\hat{\mathcal{B}}(\lambda)_{\text{cl}} = \mathcal{B}(\lambda)_{\text{cl}} = \mathcal{B}(\lambda)_{\text{cl}}.
\]

4. Main result.

4.1. Description of the degree function in terms of the parabolic quantum Bruhat graph.

As in §3.2, we fix a level-zero dominant integral weight \(\lambda \in \sum_{j \in I_0} \mathbb{Z}_{≥0} \omega_j \), and set \(J := \{ j \in I_0 \mid \langle \Lambda, \alpha_j^\vee \rangle = 0 \} \), where \(\Lambda := \text{cl}(\lambda) \).

Let \(\eta \in \mathcal{B}(\lambda)_{\text{cl}} \). By Theorem 3.2.6, we can write \(\eta \) in the form:

\[
\eta = (x_1, x_2, \ldots, x_s ; \sigma_0, \sigma_1, \ldots, \sigma_s) \in \hat{\mathcal{B}}(\lambda)_{\text{cl}}.
\]
For each 1 \leq p \leq s - 1, let \(d_p \) denote a directed \(\sigma_p \)-path from \(x_{p+1} \) to \(x_p \) of length \(\ell(x_{p+1}, x_p) \); observe that the value \(\langle \Lambda, \text{wt}(d_p) \rangle \) does not depend on the choice of such a directed \(\sigma_p \)-path \(d_p \). Indeed, if \(d_p' \) is another directed \(\sigma_p \)-path from \(x_{p+1} \) to \(x_p \) of length \(\ell(x_{p+1}, x_p) \), then it follows from [LNS31, Proposition 8.1] that \(\text{wt}(d_p) - \text{wt}(d_p') \in Q \vee := \bigoplus_{\gamma \in J} \mathbb{Z} \alpha_\gamma \). Since \(J = \{ j \in I_0 \mid \langle \Lambda, \alpha_\gamma \rangle = 0 \} \) by the definition, we have

\[
\langle \Lambda, \text{wt}(d_p) - \text{wt}(d_p') \rangle = 0, \quad \text{and hence} \quad \langle \Lambda, \text{wt}(d_p) \rangle = \langle \Lambda, \text{wt}(d_p') \rangle.
\]

Now, we define

\[
\tilde{\nu}_1 := x_1 \lambda, \quad \tilde{\nu}_p := x_p \lambda + \left(\sum_{n=1}^{p-1} \langle \Lambda, \text{wt}(d_n) \rangle \right) \delta \quad \text{for} \ 2 \leq p \leq s, \quad (4.1.1)
\]

and set

\[
\tilde{\pi}_\eta := (\tilde{\nu}_1, \tilde{\nu}_2, \ldots, \tilde{\nu}_s; \sigma_0, \sigma_1, \ldots, \sigma_s).
\]

The following is the main result of this paper; its proof will be given in the next subsection.

Theorem 4.1.1. Keep the notation above. Then, the element \(\tilde{\pi}_\eta \) defined above is identical to the element \(\pi_\eta \in B_0(\lambda) \subset B(\lambda) \) in Proposition 2.3.1. Moreover, we have

\[
\text{Deg}(\eta) = -\sum_{p=1}^{s-1} (1 - \sigma_p) \langle \Lambda, \text{wt}(d_p) \rangle . \quad (4.1.2)
\]

Remark 4.1.2. Formula (4.1.2) is identical to the one obtained in [LNS32, Theorem 4.5], but the proof given there is completely different from the proof given in the next subsection.

Example 4.1.3. Keep the notation and setting of Examples 3.2.3 and 3.2.5. Let us compute \(\text{Deg}(\eta_1) \). It is obvious that \(r_2 \overset{\alpha_1}{\leftarrow} r_2 r_1 \) (resp., \(r_2 r_1 \overset{\theta}{\leftarrow} r_1 \)) is a shortest directed path from \(r_2 r_1 \) to \(r_2 \) (resp., from \(r_1 \) to \(r_2 r_1 \)). Because \(r_2 \overset{\alpha_1}{\leftarrow} r_2 r_1 \) (resp., \(r_2 r_1 \overset{\theta}{\leftarrow} r_1 \)) is a quantum edge (resp., Bruhat edge), it follows from the definition (3.1.2) of the weight of a directed path that

\[
\text{wt}(r_2 \overset{\alpha_1}{\leftarrow} r_2 r_1) = \alpha_1 \vee \quad \text{and} \quad \text{wt}(r_2 r_1 \overset{\theta}{\leftarrow} r_1) = 0.
\]
Hence, by Theorem 4.1.1, we have

\[
\text{Deg}(\eta_1) = -\left(1 - \frac{1}{2}\right) \langle \Lambda, \text{wt}(r_2 \leftarrow r_1) \rangle - \left(1 - \frac{2}{3}\right) \langle \Lambda, \text{wt}(r_1 \leftarrow r_2) \rangle \\
= -\left(1 - \frac{1}{2}\right) \langle \Lambda, \alpha_1^\vee \rangle - \left(1 - \frac{2}{3}\right) \langle \Lambda, 0 \rangle = -1.
\]

Similarly, we have

\[
\text{Deg}(\eta_2) = -\left(1 - \frac{1}{2}\right) \langle \Lambda, \text{wt}(r_1 \leftarrow e) \rangle - \left(1 - \frac{2}{3}\right) \langle \Lambda, \text{wt}(e \leftarrow w_0) \rangle = -1,
\]

\[
\text{Deg}(\eta_3) = -\left(1 - \frac{1}{3}\right) \langle \Lambda, \text{wt}(e \leftarrow \theta w_0) \rangle - \left(1 - \frac{1}{2}\right) \langle \Lambda, \text{wt}(w_0 \leftarrow r_1 r_2) \rangle = -2.
\]

4.2. Proof of Theorem 4.1.1.

Keep the notation of the previous subsection. First we claim that \(e^\pi \eta \in B(\lambda)\). We will show by induction on \(p\) that \(e^\nu_p \in W_{\lambda}\) for all \(1 \leq p \leq s\). If \(p = 1\), then the assertion is obvious from the definition: \(\tilde{\nu}_1 = x_1 \lambda\). Assume now that \(s - 1 \geq p \geq 1\), and \(d_p\) is of the form

\[
d_p : x_p = w_0 \overset{\beta_1}{\leftarrow} \overset{\beta_2}{\leftarrow} \overset{\beta_3}{\leftarrow} \cdots \overset{\beta_n}{\leftarrow} w_n = x_{p+1}.
\]

For each \(1 \leq k \leq n\), we define \(\xi_k \in \Delta_{\text{re}}^+\) as follows (see Proposition 3.1.3):

\[
\xi_k = \begin{cases}
 w_k \beta_k & \text{if } w_{k-1} = \lfloor w_k r \beta_k \rfloor \overset{\beta_k}{\leftarrow} w_k \text{ is a Bruhat edge,} \\
 w_k \beta_k + \delta & \text{if } w_{k-1} = \lfloor w_k r \beta_k \rfloor \overset{\beta_k}{\leftarrow} w_k \text{ is a quantum edge.}
\end{cases}
\]

Then, for \(0 \leq k \leq n\), we obtain

\[
\tilde{\mu}_k := r_{\xi_k} \cdots r_{\xi_2} r_{\xi_1} \tilde{\nu}_p = w_k \lambda + \left(\sum_{u=1}^{p-1} \langle \Lambda, \text{wt}(d_u) \rangle \right) \delta + \left(\sum_{l \in [1, k]} \langle \Lambda, \beta_l^\vee \rangle \right) \delta,
\]

where \([1, k]_q := \{1 \leq l \leq k \mid w_{l-1} = \lfloor w_l r \beta_l \rfloor \overset{\beta_l}{\leftarrow} w_l \text{ is a quantum edge}\}.

Indeed, this equation follows by induction on \(k\). If \(k = 0\), then equation...
(4.2.2) is obvious by (4.1.1). Assume that $k \geq 1$; by the induction hypothesis,

$$\tilde{\mu}_k = r_{\xi_k} \tilde{\mu}_{k-1} = r_{\xi_k} w_{k-1} \lambda + \left(\sum_{u=1}^{p-1} \langle \Lambda, \text{wt}(d_u) \rangle \right) \delta + \left(\sum_{l \in [1, k-1]_q} \langle \Lambda, \beta_l^\vee \rangle \right) \delta.$$ \hspace{1cm} (4.2.3)

If $w_{k-1} \xleftarrow{\beta_k} w_k$ is a Bruhat edge, then we have $[1, k]_q = [1, k-1]_q$. Also, since $\xi_k = w_k \beta_k$, it follows that

$$r_{\xi_k} w_{k-1} \lambda = w_k r_{\beta_k} w_{k-1} \lambda = w_k r_{\beta_k} w_{k-1} w_k r_{\beta_k} \lambda = w_k r_{\beta_k} w_{k-1} w_k r_{\beta_k} \lambda.$$

Therefore, the right-hand side of equation (4.2.3) is identical to

$$w_k \lambda + \left(\sum_{u=1}^{p-1} \langle \Lambda, \text{wt}(d_u) \rangle \right) \delta + \left(\sum_{l \in [1, k-1]_q} \langle \Lambda, \beta_l^\vee \rangle \right) \delta.$$

If $w_{k-1} \xleftarrow{\beta_k} w_k$ is a quantum edge, then we have $[1, k]_q = [1, k-1]_q \cup \{k\}$. Also, since $\xi_k = w_k \beta_k + \delta$, it follows that

$$r_{\xi_k} w_{k-1} \lambda = r_{w_k \beta_k + \delta} w_{k-1} \lambda = r_{w_k \beta_k} t_{w_k \beta_k} w_{k-1} \lambda$$

$$= \underbrace{r_{w_k \beta_k} w_{k-1} \lambda}_{w_k \lambda \text{ as above}} - \langle w_{k-1} \Lambda, w_k \beta_k^\vee \rangle \delta$$

$$= w_k \lambda - \langle [w_k r_{\beta_k}] \Lambda, w_k \beta_k^\vee \rangle \delta = w_k \lambda - \langle w_k r_{\beta_k} \Lambda, w_k \beta_k^\vee \rangle \delta$$

Therefore, the right-hand side of equation (4.2.3) is identical to

$$w_k \lambda + \langle \Lambda, \beta_k^\vee \rangle \delta + \left(\sum_{u=1}^{p-1} \langle \Lambda, \text{wt}(d_u) \rangle \right) \delta + \left(\sum_{l \in [1, k-1]_q} \langle \Lambda, \beta_l^\vee \rangle \right) \delta.$$

This proves equation (4.2.2). In particular, for $k = n$, we obtain

$$\bar{\mu}_n = r_{\xi_n} \cdots r_{\xi_2} r_{\xi_1} \bar{\beta}_p = w_n \lambda + \left(\sum_{u=1}^{p-1} \langle \Lambda, \text{wt}(d_u) \rangle \right) \delta + \left(\sum_{l \in [1, n]_q} \langle \Lambda, \beta_l^\vee \rangle \right) \delta.$$
Explicit description of the degree function

\begin{align*}
\nu_p &= x_{p+1} \lambda + \left(\sum_{u=1}^{p-1} \langle \Lambda, \text{wt}(d_u) \rangle \right) \delta + \langle \Lambda, \text{wt}(d_p) \rangle \delta \\
&= x_{p+1} \lambda + \left(\sum_{u=1}^{p} \langle \Lambda, \text{wt}(d_u) \rangle \right) \delta = \tilde{\nu}_{p+1}
\end{align*}

by the definition (4.1.1) of $\tilde{\nu}_{p+1}$. Since $\tilde{\nu}_p \in W \lambda$ by our induction hypothesis, we deduce that $\tilde{\nu}_{p+1} \in W \lambda$, as desired. Also, by Proposition 3.1.3 (1), we see that for $1 \leq p \leq s - 1$,

$$
\tilde{\nu}_p = \tilde{\mu}_0 > \tilde{\mu}_1 > \tilde{\mu}_2 > \cdots > \tilde{\mu}_n = \tilde{\nu}_{p+1},
$$

where $\tilde{\mu}_k = r_{\xi_k} \tilde{\mu}_{k-1}$ for $1 \leq k \leq n$ by the definitions. Moreover, since d_p is a directed σ_p-path, it follows from Remark 3.2.2 that the sequence above is a σ_p-chain for $(\tilde{\nu}_p, \tilde{\nu}_{p+1})$. Thus we conclude that $\tilde{\pi}_\eta \in B(\lambda)$.

Because $\tilde{\pi}_\eta \in B(\lambda)$ as shown above, and because $\text{cl}(\tilde{\pi}_\eta) = \eta$ and $\tilde{\nu}_1 = x_1 \lambda \in W_0 \lambda \subset \lambda - Q_0^+$ by the definitions, the element $\tilde{\pi}_\eta$ satisfies conditions (1) and (3) of Proposition 2.3.1. Therefore, we deduce from Lemma 2.3.2 that $\tilde{\pi}_\eta(1)$ is of the form:

$$
\tilde{\pi}_\eta(1) = \lambda - \beta + (- \text{Deg}(\eta) + L) \delta
$$

for some $\beta \in Q_0^+$ and $L \in \mathbb{Z}_{\geq 0}$. By Lemma 2.3.2, in order to prove that $\tilde{\pi}_\eta = \pi_\eta$, it suffices to show that $L = 0$, or equivalently, $- \text{Deg}(\eta) + L \leq - \text{Deg}(\eta)$ since $L \in \mathbb{Z}_{\geq 0}$. By using (2.2.1), we see from the definition of $\tilde{\pi}_\eta$ that

$$
- \text{Deg}(\eta) + L = \sum_{p=0}^{s-1} (\sigma_{p+1} - \sigma_p) \left(\sum_{u=1}^{p} \langle \Lambda, \text{wt}(d_u) \rangle \right). \quad (4.2.4)
$$

Now, if we write π_η as

$$
\pi_\eta = (\nu_1, \nu_2, \ldots, \nu_b; \tau_0, \tau_1, \ldots, \tau_b),
$$

then we have $\nu_q \in \lambda - Q_0^+ + K_q \delta$ for some $K_q \in \mathbb{Z}$, $1 \leq q \leq b$ (see Remark 2.1.2 (2)); observe that $K_1 = 0$ by the definition of π_η (see Proposition 2.3.1 (3)), and that $0 = K_1 \leq K_2 \leq \cdots \leq K_b$ by Remark 2.2.2. Since
cl(πη) = η, we deduce that there exist 0 = c_0 < c_1 < c_2 < \cdots < c_s = b such that τ_{c_p} = σ_p for 0 ≤ p ≤ s, and hence π_η can be written as:

\[(ν_1, \ldots, ν_{c_1}, ν_{c_1+1}, \ldots, ν_{c_2}, \ldots, ν_{c_s-1+1}, \ldots, ν_{c_s}) = (ν_b)\; ;\]

mapped to \(x_1λ\) by cl

mapped to \(x_2λ\) by cl

mapped to \(x_sλ\) by cl

\[0 = τ_0, τ_1, \ldots, τ_{c_1}, τ_{c_1+1}, \ldots, τ_{c_2}, \ldots, τ_{c_{s-1}+1}, \ldots, τ_{c_s} = τ_b = 1\).

From this, we compute

\[−\text{Deg}(η) = \sum_{q=1}^{b} (τ_q − τ_{q-1}) K_q = \sum_{p=0}^{s-1} \sum_{q=c_p+1}^{c_{p+1}} (τ_q − τ_{q-1}) K_q\]

\[≥ \sum_{p=0}^{s-1} \sum_{q=c_p+1}^{c_{p+1}} (τ_q − τ_{q-1}) K_{c_{p+1}} + \text{since } K_q ≥ K_{c_{p+1}} \text{ for all } c_p + 1 ≤ q ≤ c_{p+1}\]

\[= \sum_{p=0}^{s-1} (τ_{c_{p+1}} − τ_{c_p}) K_{c_{p+1}} = \sum_{p=0}^{s-1} (σ_{p+1} − σ_p) K_{c_{p+1}}. \quad (4.2.5)\]

Therefore, by (4.2.4) and (4.2.5), in order to show the inequality \(-\text{Deg}(η) + L ≤ −\text{Deg}(η)\), it suffices to show that

\[K_{c_{p+1}} ≥ \sum_{u=1}^{p} \langle Λ, \text{wt}(d_u) \rangle \quad \text{for all } 0 ≤ p ≤ s − 1. \quad (4.2.6)\]

We show this inequality by induction on \(p\). If \(p = 0\), then the assertion is obvious since \(K_{c_{p+1}} = K_1 = 0\) as seen above. Assume that \(s − 1 ≥ p > 0\).

Take \(μ_0, μ_1, \ldots, μ_m \in Wλ\) such that

\[ν_{c_p} = μ_0 > μ_1 > \cdots > μ_m = ν_{c_{p+1}}\]

(for example, take a \(τ_{c_p}\)-chain for \((ν_{c_p}, ν_{c_{p+1}})\)), and let \(ζ_k \in Δ_{re}^+\) be the positive real root such that \(μ_k = r_{ζ_k}μ_{k-1}, 1 ≤ k ≤ m\). For each \(0 ≤ k ≤ m\), let \(v_k \in W_0^j\) be a unique element in \(W_0^j\) such that \(cl(μ_k) = v_kλ\); remark that \(v_0 = x_p\) and \(v_m = x_{p+1}\). By repeated application of Proposition 3.1.3(2), we obtain a directed path (not shortest in general)

\[d : x_p = v_0 \xleftarrow{γ_1} v_1 \xleftarrow{γ_2} v_2 \xleftarrow{γ_3} \cdots \xleftarrow{γ_m} v_m = x_{p+1}\]
Explicit description of the degree function

from \(x_{p+1}\) to \(x_p\) in the parabolic quantum Bruhat graph, where \(\gamma_k \in \Delta_0^+ \setminus \Delta_0^{+ j}\) for \(1 \leq k \leq m\) are defined by

\[
\gamma_k := \begin{cases}
 v_k^{-1}\zeta_k & \text{if } \zeta_k \in \Delta_0^+, \\
 v_k^{-1}(\zeta_k - \delta) & \text{if } \zeta_k \in \{-\gamma + \delta \mid \gamma \in \Delta_0^+\};
\end{cases}
\]

recall that \(v_{k-1} \xrightarrow{\gamma_k} v_k\) is a Bruhat edge if and only if \(\zeta_k \in \Delta_0^+\). By the same argument as for equation (4.2.2), we can show that for \(0 \leq k \leq m\),

\[
\mu_k = r_{\zeta_k} \cdots r_{\zeta_2} r_{\zeta_1} \nu_{c_p} = v_k \lambda + K_{c_p} \delta + \left(\sum_l \langle \Lambda, \gamma_l' \rangle \right) \delta,
\]

where the summation above is over all \(1 \leq l \leq k\) for which \(v_{l-1} = [v_l r_{n_l}] \xrightarrow{\gamma_l} v_l\) is a quantum edge. In particular, for \(k = m\), we obtain

\[
\nu_{c_p+1} = \mu_m = x_{p+1} \lambda + K_{c_p} \delta + \langle \Lambda, \text{wt}(d) \rangle \delta,
\]

and hence \(K_{c_p+1} = K_{c_p} + \langle \Lambda, \text{wt}(d) \rangle\). Here we see from [LNS31, Proposition 8.1] that \(\langle \Lambda, \text{wt}(d) \rangle \geq \langle \Lambda, \text{wt}(d_p) \rangle\). Also, by the induction hypothesis (note that \(c_{p-1} < c_p\)),

\[
K_{c_p} \geq K_{c_{p-1}+1} \geq \sum_{u=1}^{p-1} \langle \Lambda, \text{wt}(d_u) \rangle.
\]

Combining these, we obtain

\[
K_{c_{p+1}} = K_{c_p} + \langle \Lambda, \text{wt}(d) \rangle \geq \sum_{u=1}^{p-1} \langle \Lambda, \text{wt}(d_u) \rangle + \langle \Lambda, \text{wt}(d_p) \rangle = \sum_{u=1}^p \langle \Lambda, \text{wt}(d_u) \rangle.
\]

Thus, we have proved the inequality \(-\deg(\eta) + L \leq -\deg(\eta)\), and hence the equality \(\tilde{\pi}_n = \pi_n\), as desired.

Finally, from equation (4.2.4) together with \(L = 0\) shown above, we deduce that

\[
-\deg(\eta) = \sum_{p=0}^{s-1} (\sigma_{p+1} - \sigma_p) \left(\sum_{u=1}^p \langle \Lambda, \text{wt}(d_u) \rangle \right) = \sum_{p=1}^{s-1} \sum_{u=1}^p (\sigma_{p+1} - \sigma_p) \langle \Lambda, \text{wt}(d_u) \rangle
\]
\[
\sum_{p=1}^{s-1} \left\{ \sum_{q=p}^{s-1} (\sigma_{q+1} - \sigma_q) \right\} \langle \Lambda, \text{wt}(d_p) \rangle = \sum_{p=1}^{s-1} (\sigma_s - \sigma_p) \langle \Lambda, \text{wt}(d_p) \rangle = \sum_{p=1}^{s-1} (1 - \sigma_p) \langle \Lambda, \text{wt}(d_p) \rangle.
\]

Thus we have proved formula (4.1.2). This completes the proof of Theorem 4.1.1. \(\square \)

References

Explicit description of the degree function

Cristian Lenart
Department of Mathematics and Statistics,
State University of New York at Albany, Albany, NY 12222, U. S. A.
e-mail: clenart@albany.edu

Satoshi Naito
Department of Mathematics, Tokyo Institute of Technology,
2-12-1 Oh-okayama, Meguro-ku, Tokyo 152-8551, Japan
e-mail: naito@math.titech.ac.jp

Daisuke Sagaki
Institute of Mathematics, University of Tsukuba,
Tsukuba, Ibaraki 305-8571, Japan
e-mail: sagaki@math.tsukuba.ac.jp

Anne Schilling
Department of Mathematics, University of California,
One Shields Avenue, Davis, CA 95616-8633, U.S.A.
e-mail: anne@math.ucdavis.edu

Mark Shimozono
Department of Mathematics, MC 0151, 460 McBryde Hall, Virginia Tech,
225 Stanger St., Blacksburg, VA 24061, U.S.A.
e-mail: mshimo@vt.edu

(Received April 18, 2015)